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Abstract 
A direct phasing method is described that is 
potentially able to solve ab initio protein structures. 
The method uses the information contained in dif- 
fraction data of the native structure and of one 
isomorphous derivative. The various steps of the 
procedure are analysed in order to estimate their 
robustness against experimental errors in measure- 
ments and lack of isomorphism. Experimental tests 
involve four typical protein structures and show that 
crystal structure solution is attained in a rather 
straightforward way. 

Symbols and abbreviations 
See paper I (Giacovazzo, Siliqi & Ralph, 1994). 

Introduction 
In paper I of this series, it was concluded that 
ab initio crystal structure solution of proteins by 
direct methods is theoretically feasible if data 
from one isomorphous derivative are available. The 
statement was the consequence of the application 
of the statistical solvability criterion (Giacovazzo, 
Guagliardi, Ravelli & Siliqi, 1994) to calculated 
error-free data. It was shown that success can be 
attained if reflections used in the phasing process are 
characterized by large values of R and Even if 
that conclusion was supported by statistical calcula- 
tions on triplet invariant reliability, the feasibility of 
ab initio direct phasing was not proved in practice. 
Indeed, lack of isomorphism between native and 
derivative structures combined with errors in the 
experimental data and/or in their mathematical 
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treatment could hinder success in practice (i.e. when 
the phasing procedure is applied to experimental 
data) even if the structure solution is straightforward 
with ideal error-free data. Generally, a direct pro- 
cedure is unsuitable for practical purposes if it is too 
sensitive to data resolution, structural complexity, 
errors in the data and lack of isomorphism. A robust 
procedure should provide a reasonable rate of suc- 
cess in standard situations, for example when applied 
to data at nonatomic resolutions and with an 
accuracy level attainable by current experimental 
techniques. In particular, a phasing procedure suc- 
cessfully working with 3 A resolution data would 
certainly solve many of the problems in macro- 
molecular crystallography. We propose in this paper 
a phasing method that, applied to real experimental 
data, shows important features: it works at atomic 
and nonatomic resolutions, it is not sensitive to 
structural complexity and it is able to handle 
standard-quality data and imperfect isomorphism. 
The limits and the first applications of the method 
are also described. For clarity, the phasing procedure 
is described step by step. 

We use as test data the experimental data of the 
four proteins quoted in paper I. APP data were 
collected using a four-circle diffractometer for the 
native and an HgCI2 derivative (Blundell, Pitts, 
Tickle, Wood & Wu, 1981). The structure was solved 
by applying SIRAS (single isomorphous replacement 
including anomalous scattering) techniques to 2 A 
resolution data. Phases were extended to 1.4A 
resolution by using a modified tangent formula. New 
data for the native protein up to 0.98 A resolution 
were collected by a four-circle diffractometer 
(Glover, Haneef, Pitts, Wood, Moss, Tickle & 
Blundell, 1983). 

For CARP (carp muscle calcium-binding protein), 
isomorphous and anomalous scattering data were 
measured (Kretsinger & Nockolds, 1973) up to 2.0 A 
resolution using precession photography; three 
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heavy-atom derivatives were used. In our calcula- 
tions, we only make use of the (3-chloromercurio-2- 
methoxypropyl)urea (CMMPU) derivative. 

Diffraction data of E2 (catalytic domain of 
Azotobacter vinelandii dihydrolipoyl transacetylase) 
were collected on a fast television area detector 
(Mattevi, Obmolova, Schulze, Kalk, Westphal, De 
Kok & Hol, 1992). One mercury and two platinum 
derivatives were used for phasing: data included 
anomalous-dispersion effects [multiple isomorphous 
replacement including anomalous scattering 
(MIRAS)]. We only make use of the mercury deriva- 
tive, which, as stated by Mattevi et al., is of excellent 
quality. 

The structure of M-FABP (recombinant human- 
muscle fatty-acid-binding protein) was originally 
solved using both multiple isomorphous replacement 
and molecular replacement procedures (Zanotti, 
Scapin, Spadon, Veerkamp & Sacchettini, 1992). 
Data for native and two isomorphous derivatives 
were collected with a Siemens X1000 area detector 
system and on a SDMS area detector system coupled 
with a rotating-anode generator. For our calcula- 
tions, we used the HgAc2 derivative. 

Anomalous dispersion is neglected in our calcula- 
tions: we use the approximation F =  ( F + +  F-)/2 
(this introduces a supplementary error in the data). 

Therefore, one small (APP) and three usual-size 
proteins are among the test structures. Furthermore, 
E2 has an unusually good derivative but low- 
resolution data and CARP is an example of particu- 
larly unfavourable data (imperfect isomorphism of 
the derivative, old experimental technique for data 
collection). 

Even if the procedure is devised for and is applied 
to experimental data, some calculations are made 
with ideal error-free data in order to show the differ- 
ent response of the phasing process to different 
qualities of data. This will also enable the reader to 
better understand the effects of the various sources 
of errors on the various steps of the procedure and 
their overall influence on the robustness of the 
process. 

The normalization process 

Several sources of errors affect the accuracy of the 
scale (K) and temperature (B) factors provided by 
the Wilson method (Hall & Subramanian, 1982; 
Cascarano, Giacovazzo & Guagliardi, 1992a). Com- 
pared with small-molecule crystallography, addi- 
tional sources of errors in macromolecular 
crystallography are nonatomic resolution of data, 
disordered water distribution and possible lack of 
information concerning number and chemical occu- 
pancy of the crystallographic sites accommodating 
additional heavy atoms in derivative structures. The 

Table 1. Values of the scale and temperature factors 
obtained in the normalization procedure for error-free 

calculated data 

Structure (Ksw)p (B~w)p (KDw)p (Bt,w)p 
code (RES) B..~, (Ksw)a (Bsw)a (Kl~)a (Bl~)a 
APP 6.8 1.27 6.0 0.87 9.2 

0.91 9.1 0.91 9.1 
CARP 18.3 0.95 18.40 0.96 18.3 

1.00 18.1 1.00 18.1 
E2 20.0 0.66 28.1 0.67 27.1 

0.69 27.1 0.69 27.1 
M-FABP 20.0 0.85 20.6 0.76 24.3 

0.81 24.4 0.81 24.4 

consequent errors for K and B could be critical for 
the success of direct procedures. Indeed, our prob- 
abilistic formula estimating triplet phase invariants 
[see equations (7) and (11) of paper I for the 
reliability parameter] mostly depends on A' factors 
which could be very sensitive to errors in K and B. 

In order to check the accuracy of the normaliza- 
tion process, we first applied the standard Wilson 
method to error-free calculated data for the test 
proteins used in paper I. For the structure-factor 
calculation, we chose the same isotropic temperature 
factor Btrue for all the atoms: the list of Btrue values 
chosen for the various test structures is shown in 
Table 1. Calculated data are obviously on an abso- 
lute scale (Ktrue- 1). Standard Wilson plots applied 
to calculated protein data  at the native protein 
resolution provided for K and B the values (Ksw)p 
and (Bsw)p, respectively; when applied to calculated 
derivative data at the same resolution as the meas- 
ured data of the derivative, the values (Ksw)a and 
(B~w)a were obtained (see Table 1). 

Deviations from true values are not negligible: as 
expected, any error in B is correlated with a Corre- 
sponding error in K and vice versa. The worst situa- 
tion occurs for APP, where the passage from 2 to 
1 A resolution involves a large difference between the 
reflection numbers used in the normalization process 
(2086 at 2 ,A, versus 17058 at 1 A resolution). 

It may be observed now that errors in the ratio 
Kd/Kp and the difference B d - B  p a r e  much more 
critical for the phasing process (they can invert A' 
signs) than errors in absolute values of K and B. We 
therefore decided to first calculate (Ksw)p and (B~w)v 
by the standard Wilson method at the derivative 
resolution and then estimate Kd/Kp and Bd-Bp by a 
differential Wilson plot through the equation (see 
Blundell & Johnson, 1976) 

In [(Y.p + ZH)(F~)/5".ff, FS)] 
= In (Kp/Ka) + 2(Ba- By) sin20/a z. 

The new values of K and B for derivatives are 
denoted (KDw)a and (BDw)a in Table 1. Again, errors 
are not negligible but the new estimates of Ka/Kp and 
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(Bd--Bp) are now more promising; indeed, they do 
not seem so large as to invert the signs of zl' terms 
with the largest modulus. Accordingly, reflections 
with small I#1 values (as a rule of thumb, I,a'l < 0.20) 
should never be actively used in a phasing process if 
formulas (7) and (11) of paper I are applied. How- 
ever, it is shown in the next sections that inversion of 
the A' terms can also occur for A' >> 0.2 as a conse- 
quence of the lack of isomorphism and of the errors 
in measurements combined with errors in scaling and 
thermal factors. Luckily, our statistical solvability 
criterion predicts that direct structure solution for 
macromolecules is feasible provided reflections with 
sufficiently large values of R and Izi'[ are used in the 
phasing process. From now on, by 'normalization 
procedure' we will always mean a differential Wilson 
plot. 

A supplementary tool for evaluating the general 
practical effectiveness of the normalization pro- 
cedure may be the comparison between the Ia'l dis- 
tribution obtained by application of an ideal 
normalization procedure and error-free calculated 
data (K=Ktrue, B=ntrue) with the [A'[ distribution 
obtained by application of the differential Wilson 
plot to experimental data. Both distributions were 
calculated for the NLAR reflections (those with 
largest R value) defined in Table 4 of paper I. Ideal 
I l'l distributions for the test structures were shown 
in Fig. 3 of paper I and are here quoted in Fig. 1. 
The experimental IA'[ distributions are shown in Fig. 
2. Their comparison suggests two things. 

(a) The APP curve in Fig. 2 is sharper than the 
corresponding curve in Fig. 1. The maximum [A'[ 
value is about 1.4 for calculated error-free data and 
only 0.8 for observed data. Furthermore, the 
observed distribution shows too large a percentage of 
IA'I close to zero. 

(b) The curves for CARP, E2 and M-FABP in 
Fig. 2 are flatter than the corresponding curves in 
Fig. 1 and show larger tails at the right-hand side. 
Consequently, a non-negligible percentage of Izll's 
are larger than their true values. If on one side too 
small I#1 values can perturb the phasing process, on 
the other side too large I,a'l's might dominate it, 
making structure solution difficult. We therefore 
decided to rescale the experimental [A'[ values in 
order to make their distribution closer to the 
expected one. 

From the relation 

IF,# = IFZ + I F # -  21FpFd[ cos q, 

where q is the angle between Fp and Fd, the 
normalized expression 

IE,~I2 = IE'~I~ + IE'~I2 - 21E',,E'~ cos  q (1) 

is obtained, where En is the normalized structure 
factor for the heavy-atom structure and E~ and E~ 

are pseudonormalized structure factors defined by 
t m P Ea-Fa/Y.g 2, Ep=Fp/Y~ 2. 

In accordance with Hauptman (1982), cos q may be 
approximated by T1 = D,(2#oiRiSi) (see paper I for 
an explanation of the symbols). Averaging over all 
reflections provides 

<IE,,15 = 1 = <IEZ + lEVI ~-  2IE~E'dIT,>. 

The scale factor 

s =  ( ( I E f  + IELI z -  2IE'pE'~T,>)-1/2 
is used for rescaling [za'[ values. 

The distributions of rescaled I,a'l's for experimen- 
tal data are shown in Fig. 3; they are significantly 
closer to the expected ones. For example: (a) the 
maximum value of [za'[ for APP is 0.8 before rescal- 
ing and 1.5 after rescaling (to be compared with 1.4, 
the maximum value of I,a'l for error-free data; (b) the 
maximum value of I,a'l for E2 is about 1.8 for ideal 
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error-free data; for observed data before rescaling 
there are four IA'I values larger than 3 and none for 
observed data after rescaling. 

It is worthwhile noting that perfect correspond- 
ence between error-free and observed I '1 distribu- 
tions will never be obtained. Indeed, lack of 
isomorphism and measurement errors can introduce 
remarkable noise in A's (see later parts of this paper). 
The worst situation occurs for CARP, where among 
the NLAR reflections there are 46 ]A'l's larger than 2 
before rescaling and 37 after rescaling. In our pro- 
cedure, we introduce the supplementary criterion, 
according to which if la'l  > 2.0 then la'l is reset to 
2.0. The [A'[ values so modified act as observed in the 
next steps of the procedure. 

The phasing procedure 

According to the suggestions of paper I, the reflec- 
tions actively used in the phasing process (let NLAR 
be their number) are chosen among the largest R 
values having [A' I > SOG. The value of SOG is 
rather arbitrary and is not very critical: however, too 
small I '1 values might involve unreliable parameters 
in the triplet estimation process, too large values 
might extend the set of active reflections to magni- 
tudes so small that, once phased, they would negli- 
gibly contribute to Fourier syntheses. In our tests, 
SOG and NLAR were chosen according to Table 2 
where, for each structure, other useful parameters 
are specified: (a) the resolution of measured data for 
the derivative (RES); (b) the corresponding number 
of symmetry independent reflections (NREFL), 
which are simultaneously measured for native and 
for derivative; (c) the minimum value of R among 
the NLAR reflections (Rmin); ( d )  the number of 
triplet invariants actively used in the phasing process 
(NTRIP). Triplets are estimated according to the 
reliability parameter [equation (11) of paper I]: the 
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Fig. 3. Distribution of rescaled [A'l's for experimental data. The 
distribution refers to the N L A R  reflections. 

number of triplets estimated positive and negative by 
this equation are denoted in Table 2 by NPOS and 
NNEG, respectively. 

Before starting the phasing process, the program 
calculates the z distribution (see paper I) relative to 
selected NLAR reflections and to NTRIP triplets 
stored for active use. The distributions for the four 
test structures (experimental data) are shown in Fig. 
4: for all of them the statistical solvability criterion is 
satisfied and this gives the reasonable hope that all 
the structures can be solved. Seemingly, the worst 
situation occurs for APP (owing to the small value of 
NLAR), the most favourable occurs for CARP. The 
result for APP is mostly influenced by the small 
NLAR value and consequently by the reduced value 
of NTRIP. If for some structure the statistical solv- 
ability criterion is not verified, the user can suitably 
modify the values of SOG, NLAR and NTRIP. The 
CARP z distribution starts at Zmi n ~ "  15: it should be 
interpreted in terms of error effects rather than in 
terms of signal-to-noise ratio. The cumulative effect 
of the various sources of error makes the [A'['s much 
larger than they actually are (see the section later on 
dedicated to post mortem analysis of the phasing 
method). 

The phasing procedure is a multisolution one, 
where starting sets of phases are generated by a 
random process (Baggio, Woolfson, Declercq & 
Germain, 1978). Random phases are given to 
NLAR/2 reflections (Burla, Cascarano & 
Giacovazzo, 1992) with unit weights for the origin 
and enantiomorph-fixing reflections and with weights 
equal to 0.8 for the others. Cycles of weighted 
tangent refinement are first applied to the NLAR/2 
reflections and, after convergence, the phasing pro- 
cess is extended to all the NLAR reflections. As in 
SIR88 (Burla, Camalli, Cascarano, Giacovazzo, 
Polidori, Spagna & Viterbo, 1989) and SIR92 
(Altomare, Cascarano, Giacovazzo, Guagliardi, 
Burla, Polidori & Camalli, 1994), a weighted tangent 
formula is used for phase extension and refinement: 

tan 9,h = Zflj sin (~kj -~- ~Oh-ky)/E3j cOs (~kj "~- ~h-- 0 
J J 

= T h/Bh, (2) 

where/3j is defined by the equation 

D,(flj) = D,(A)D,(otOD,(ab_ 0 

and 

= + ''2. (3)  

The reliability parameter ah of any determined phase 
~0h is modified according to the agreement between 
the calculated and the expected value of ah. In 
particular, if ah is larger than the expected value 

( a h )  = ~'AjDI(Aj), (4) 
i 



CARMELO GIACOVAZZO, DRITAN SILIQI AND RICCARDO SPAGNA 613 

Table 2. Other useful parameters for the four structures 

DERIVATIVE denotes the atomic species added to the protein, RES [= A/(2sin0max) ] is the resolution of the measured data for the 
derivative. 

N T R I P  
Structure  code D E R I V A T I V E  RES (A) N R E F L  N L A R  S O G  Rmi n ( N P O S , N N E G )  

APP Hg 2.0 2086 600 0.4 0.45 27437 
(16459, 10978) 

CARP Hg 2.0 4416 1000 0.8 0.7 30000 
03880, 16120) 

E2 Hg 3.0 7757 1000 0.8 0.9 30000 
(14946, 15054) 

M-FABP Hg 3.0 2831 800 0.5 0.6 30000 
(15232, 14768) 

then the calculated ah is replaced by 

(ah) exp [ - ( a,  - ( O th )2 ) lZo ' ]h ]  l i3, 

where 

o -2 = 1yA~l  + D2(Aj)-2D~(Aj)]. (5) 
~h 

J 

The weighting scheme is designed to drive phases 
towards values that minimize the difference between 
a and (a) by reducing in the tangent refinement the 
importance of the phases with too large values of a. 

F i g u r e s  o f  m e r i t  

Recognizing the correct solution among different 
trials is not a simple task for protein structures 
(Woolfson & Yao, 1990; Giacovazzo, Guagliardi, 
Ravelli & Siliqi, 1994). 

Figures of merit (FOMs) used in our procedure for 
picking the correct solution from the trial solutions 
are based on the theory described in two recent 
papers (Cascarano, Giacovazzo & Viterbo, 1987; 
Cascarano, Giacovazzo & Guagliardi, 1992b). Sub- 
stantial modifications are, however, necessary to face 
the larger complexity of the problem and to take 
advantage of the information contained in derivative 
data. 
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. . .  

i 
/ ................... . . . . .  

3 6 9 12 15 18 21 24 
Z 

Fig. 4. z distribution for the test structures relative to observed 
data. 

The first FOM is MABS = (Y-hah)/(Y-hah), where 

a h  = Aj sin (~Ok~ + ~Oh - 0 

and 

Aj = 2[ 0"3/ 0"32/2]pRaRkjRh_k, + 2[ 0"3/ o'3/2]aAhAk Ak-k/ 

MABS gives a measure of the consistency of the 
triplet estimates but it is not used as an active FOM 
for picking (in combination with others) the correct 
solution. 

The second FOM (ALFCOMB) depends on the 
ratios (a,  - (ah))/o',, h, where tr,,, is given by (5). 

This expression for the variance holds in the 
absence of errors in measurements and in their 
mathematical treatment as well as in the presence of 
perfect isomorphism between native and derivative 
structures. If this is not the case, as for real data, the 
variance cannot be perfectly calculated and is prob- 
ably underestimated by tr,, b. Accordingly, we used 
2tr,~h instead of tr,, b in ALFCOMB. 

The third FOM (PSICOMB) relies on the expecta- 
tion that the distribution of the psi-zero triplets 
should be as random as possible. PSICOMB depends 
on the ratios aC, ltr,~;, where 

# # 
a h  = AS sin (~% + ~Oh - 

Aj = 2[tr3/tr3/2]ICAkjAh_kj 

[ t2 \1/2 

The weak reflections that constitute psi-zero triplets 
with the NLAR reflections are characterized by small 
values of both R and IA' I. Here, there is no room for 
a FOM based on classical negative quartet estimates 
based on native data only, which is unreliable for 
macromolecular structures of usual size. 
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Table 3. APP: FOM values for the 'best' trial solutions as ranked by CFOM 

The last two lines correspond to the published refined structure (last line) and to the solution obtained by tangent  refinement o f  the true 
phases. 

Trial 

3 
2 

24 

MABS A L F C O M B  PSICOMB C P H A S E  C F O M  E R R  (weighted) 

3.14 0.98 1.00 1.0 0.99 85 (84) 
2.75 0.94 1.00 1.0 0.96 41 (37) 
1.72 0.47 1.00 1.0 0.65 85 (84) 

: : : : : : 

2.74 0.93 1.00 1.0 0.96 41 (37) 
1.41 0.92 0.99 0.94 0.93 0 (0) 

Table 4. CARP: FOM values for the "best' trial solutions as ranked by CFOM 

In the last line, F O M  values corresponding to the true phase solution are quoted; the last but  one line refers to the solution obtained by 
tangent  refinement of  the true phases. 

Trial 

2 
21 

3 

MABS A L F C O M B  PSICOMB C P H A S E  C F O M  E R R  (weighted) 

1.15 1.0 0.06 0.99 0.99 86 (86) 
0.93 0.0 0.34 0.87 0.42 41 (36) 
0.70 0.0 0.02 0.70 0.33 84 (85) 

0.93 0.0 0.34 0.87 0.42 42 (36) 
0.50 0.0 0.12 0.45 0.22 0 (0) 

Table 5. E2: FOM values for the 'best' trial solutions as ranked by CFOM 

In the last line, F O M  values corresponding to the true phase solution are quoted; the last but  one line refers to the 
tangent  refinement of  the true phases. 

solution obtained by 

Trial MABS A L F C O M B  PSICOMB C P H A S E  C F O M  E R R  (weighted) 

22 1.59 1.0 0.95 1.0 1.0 87 (85) 
4 1.52 1.0 0.93 1.0 1.0 87 (88) 

10 0.94 0.24 0.88 0.88 0.52 30 (23) 
9 0.56 0.02 0.35 0.60 0.26 86 (89) 
: • : : : : • 

0.94 0.24 0.88 0.88 0.52 30 (23) 
0.70 0.15 0.60 0.63 0.36 0 (0) 

Table 6. M-FABP: FOM values for the 'best' trial solutions as ranked by CFOM 

In the last line, F O M  values corresponding to the true phase solution are quoted; the last but  one line refers to the solution obtained by 
tangent  refinement o f  the true phases. 

Trial 

lO 
13 

MABS A L F C O M B  PSICOMB C P H A S E  C F O M  E R R  (weighted) 

1.04 0.11 0.93 0.94 0.46 45 (37) 
0.83 0.02 0.68 0.80 0.35 64 (61) 

: : : : • : 

1.04 0.11 0.94 0.94 0.46 44 (37) 
0.54 0.11 0.32 0.48 0.26 0 (0) 

In SIR88 and SIR92, a specific FOM (CPHASE) 
is based on negative estimated triplets by application 
of the Pao formula (Cascarano, Giacovazzo, Camalli, 
Spagna, Burla, Nunzi & Polidori, 1984). In this 
context, negative and positive triplets here play a 
similar role: they are nearly equal in number and 
reliability and are both actively used in the phasing 
process. We therefore prefer to calculate the ratio 

Y Ajcos  /EA+(cos 
J J 

for both positive and negative estimated triplet 
phases ~ .  A combined figure of merit (CFOM) 

integrates the indications arising from ALFCOMB, 
PSICOMB and CPHASE. 

Applications 

The procedure described above has been applied to 
APP, CARP, E2 and M-FABP. The number of trials 
for each structure was fixed at 25, an amazing small 
number if one considers the complexity of the prob- 
lem to be solved. FOM efficiency can be judged from 
Tables 3-6, where the trial solutions are ranked in 
decreasing order with respect to the combined figure 
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of merit CFOM. Each FOM must lie between zero 
and one and is expected to be one for the correct 
solution. On the same line, the trial number and the 
values of MABS, ALFCOMB, PSICOMB, CPHASE 
and CFOM are shown. In the last column, the 
average phase error ([~0tr~e- ~P~alc[) (unweighted and 
weighted) is given in degrees (ERR). The last two 
lines show the same data for the solution that is 
obtained by tangent refinement of the true phases 
and for the published refined structure (last line). 
The information contained in the last line suggests to 
the reader some inefficiency of the FOMs: often they 
are not maximal for the correct structure. The last 
line provides a guess of the overall reliability of 
triplet estimates used in the tangent refinement pro- 
cess: good triplets usually lead to small values of 
ERR. 

Tables 3-6 show that FOMs are not optimal but 
are sufficiently good for practical purposes. The 
order of the correct solution (bold typeface) is 2 for 
APP and CARP, 1 for M-FABP and 3 for E2. The 
weighted error is not larger than 37 ° for all the test 
structures: the best performance occurs for E2 (23°); 
this has the largest unit cell but also an unusually 
good derivative. It is worthwhile noting that the 
correct solution found among the 25 trials has an 
average phase error very close to the solution 
obtained by tangent refinement of the true phases. In 
other words, the procedure easily drives phases to 
converge to the 'best' values allowed by the overall 
efficiency of triplet relationships. 

It is not possible from Tables 3-6 to derive conclu- 
sions about the relative efficiencies of the various 
FOM's. For example: (a) PSICOMB is highly discri- 
minant for CARP and M-FABP but absolutely use- 
less for APP; (b) ALFCOMB is discriminant for 
M-FABP and absolutely useless for CARP; 
CPHASE works quite well for M-FABP and is of 
modest discriminating power for the others. This 
oscillating behaviour is better explained in the sec- 
tion dedicated to the post mortem analysis of the 
phasing method. A general feeling of the quality of 
the Fourier maps obtained by our procedure may be 
gathered from Figs. 5 and 6, where portions of the 
M-FABP electron-density map are shown. In Fig. 
5(a), the electron-density map around residues 19-22 
(Tyr-Met-Lys-Ser) is shown as obtained at the end of 
our phasing process (800 phased reflections). The 
figure can usefully be compared with the refined 
electron-density map calculated by Zanotti, Scapin, 
Spadon, Veerkamp & Sacchettini (1992) at the end 
of their structure-refinement process by using all 
reflections to 2.1 A resolution (Fig. 5b). The corre- 
lation between the two maps is remarkable. Differen- 
ces are due mostly to the limited number of phased 
reflections used for Fig. 5(a) rather than to phase 
errors. This is confirmed by Fig. 5(c), where correct 

phases are associated with the 800 reflections used 
for Fig. 5(a). 

Of particular interest is Fig. 6(a), where electron 
density, as obtained by our procedure for a portion 
of a-helix II (residues from 27 to 36), is shown. Figs. 
6(b) and (c) represent the electron density calculated 
for the same region as described for Figs. 5(b) and 

(a) 

(b) 

(c) 
Fig. 5. Electron-density maps around residues 19-22 (Tyr-Met- 

Lys-Ser) of M-FABP, calculated with: (a) 800 reflections, 
phased from direct methods; (b) all reflections to 2.1 A resolu- 
tion with true phases; (c) the same 800 reflections as in (a) 
associated with true phases (stereo). 



616 A B  I N I T I O  PROTEIN STRUCTURE BY DIRECT METHODS. II 

(c). Maps 6(a) and (c) show similar breaks in the 
electron density: these are in correspondence with 
nitrogen 32 and with peptide bonds 29-30 and 
35-36. 

Figs. 5 and 6 are examples of good correlation 
between calculated and true electron de.nsities. 
Unfortunately, examples of bad correlation can fre- 
quently be found. 

Generally, the electron-density maps we obtain 
suffer from the same drawbacks usually found for 

(a) 

(t,) 

(c) 

Fig. 6. Electron-density map for a portion of t~-helix II (residues 
27-36) of M-FABP, calculated with: (a) 800 reflections, phases 
from direct methods; (b) all reflections to 2.1 A resolution with 
true phases; (c) the same 800 reflections as in (a) associated with 
true phases (stereo). 

small molecules. For example, owing to series- 
termination errors, some structural parts are well 
emphasized with respect to the background, some 
others drown in it and false details are generated. 
Continuity in the electron density, an important 
requisite for macromolecules (which would make 
chemical interpretation of the Fourier map easier), is 
not guaranteed at this stage of the phasing process 
and the map is therefore not interpretable. The 
general conclusion is that phase extension rather 
than a better phase refinement is the most urgent 
problem to be faced. 

Loss of enantiomorph 

Any direct-methods user working in the small- 
molecule field knows perfectly well that a perverse 
property of the tangent formula is the tendency to 
lose the enantiomorph in the 73 symmorphic and in 
several nonsymmorphic space groups. The tendency 
can be fought by introducing special weighting 
schemes in the tangent formula and by designing 
FOMs that are able to discard false centrosymmetric 
or pseudocentrosymmetric solutions from the set of 
the most probable trials. The space groups of APP, 
CARP and M-FABP belong to the subset for which 
the enantiomorph is easily lost: actually, we obtain 
for APP and CARP pseudocentrosymmetric solu- 
tions associated with high FOM values. For 
example, in APP the correct position of the Zn atom 
is clearly and correctly defined but a pseudocentro- 
symmetric image is also obtained. This is all in spite 
of the fact that our weighting scheme was designed 
to hinder the loss of enantiomorph and our FOMs 
were devoted to discarding centrosymmetric solu- 
tions. Any attempt at modifying the weighting 
scheme for preserving the enantiomorph failed. The 
question becomes clear if one looks at Tables 7-8: by 
using error-free data we partitioned the NREFL 
reflections of APP and CARP into subsets, each 
subset including 1a'1 values falling in a fixed interval. 
The tables show for APP and CARP the number of 
reflections (nr) per subset and the average phase 
difference between the true phase and (0,zr). Reflec- 
tions with very small 141 values are more probably 
close to _ zr/2 than to nTr, while reflections with 
large 141 values are pseudocentrosymmetric. The 
obvious conclusion is that the conditions adopted for 
the selection of the NLAR reflections (i.e. R and la'l 
sufficiently large) defines at the same time a subset of 
phases that are in a large majority centrosymmetric. 
Enantiomorph-sensitive phases are not present in the 
group of NLAR reflections: that is the reason why 
the enantiomorph cannot be maintained for CARP 
and APP in the framework of the present method. 
We need a supplementary step where enantiomorph- 
sensitive phases would be involved and play a central 
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Table 7. APP: the number of  reflections (nr) with [A" 
lying in a given interval and the corresponding average 
phase difference (([A¢~}) between true phases and (0,~) 

Error-free calculated data  are used. 

Range  nr  (laa~> 

0.0-0.1 302 52 
0.1-0.2 323 48 
0.2-0.3 295 48 
0.3-0.4 225 45 
0.4-0.5 198 41 
0.5--0.6 174 35 
0.6-4).7 158 36 
0.7-0.8 106 29 
0.8--0.9 i00 27 
0.9-1.0 85 21 
1.0-l . l  69 13 
l . l - l .2 28 7 
1.2-1.3 14 4 
1.3-1.4 8 2 
1.4-1.5 1 11 
1.5-I .6 1 0 

Table 8. CARP: the number of  reflections (nr) with 
A' I lying in a given interval and the corresponding 
average phase difference ((IA~)) between true phases 

and (0, Tr) 

Error-free calculated data  are used. 

Range  nr (lAgS) 
0.0-0.1 838 62 
0.1-0.2 702 57 
0.2-0.3 617 50 
0.3--0.4 506 46 
0.4-0.5 438 38 
0.5--0.6 438 35 
0.6--0.7 397 27 
0.7-0.8 297 21 
0.8-0.9 311 15 
0.9-1.0 112 8 
1.0-- 1. I 29 4 
1.1-1.2 1 0 

role. This concerns the phase-extension process 
rather than the present paper. It cannot, however, be 
claimed that the enantiomorph is always lost by our 
procedure in symmorphic space groups. E2 is just 
one example of a structure crystallizing in a symmor- 
phic space group for which the enantiomorph is not 
lost. The problem for CARP is probably magnified 
by the fact that distribution of calculated phase 
angles for the native protein is essentially flat 
between 30 and 150 ° and peaks sharply in the -2 .5  
to 2.5 ° interval. Of the 4829 noncentrosymmetric 
reflections, there are 733 more near 0 or 180 ° than 
predicted by a random distribution of relative phase 
angles (Kretsinger & Nockolds, 1973). 

Post mortem analysis of the phasing method 

The limits and potential of our phasing method 
cannot be fully understood without a post mortem 
analysis of the efficiency of the various steps of our 
procedure. It will than be possible to recognize the 

most critical points of the process and design better 
strategies for a more robust phasing process. 

First, we consider the normalization step. A guess 
about errors introduced by the differential Wilson 
plot can be obtained by using ideal error-free data 
and by calculating the percentage of reflections that 
undergo sign inversion for A' (i.e. the true sign of A', 
calculated from known native and derivative struc- 
tures, changes as a result of the errors introduced by 
the normalization process). The variation of this 
percentage as a function of IA'I is shown in Fig. 7 for 
the four test structures (curves Piny) and with respect 
to the NREFL reflections. The inversion rate due to 
the statistical treatment of data is not negligible for, 
say, [A'] < 0.2. 

Let us now repeat the same calculations using 
experimental data. This time, the sign inversion for 
A' is due to the combined action of physical sources 
of error (mostly lack of isomorphism and errors in 
measurements) and of their statistical treatment in 
the normalization process. The curves Pi~v for the 
four test structures are shown in Fig. 8. The percen- 
tage of sign inversions is now much larger than for 
calculated data: surprisingly, Pi~ is not negligible 
even for very large [A'I values. APP and E2 have the 
most favourable behaviours: Pinv is about 0.10 for 
[A'[=I but increases to 0.20 for M-FABP. Pi~ is 
amazingly high for CARP: it is nearly constant 
(about 0.45) over a large range and even increases 
for the largest IA'l's. It is instructive to compare in 
Table 9 the 51 observed [A'[ > 2.0 found among the 
NREFL reflections, with the corresponding true 
(error-free) calculated values. Among several large 
errors there are 'impossible' observed A' values: e.g. 
5.23, 6.21 and 7.74, for which the calculated values 
are 0.0, -0 .07 and -0.12. A large [A'[ value for 
CARP is by no means a warranty that its sign is 
correct. No correlation is found between the error 
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Fig. 7. Percentage o f  reflections that  undergo  sign inversion for A' 
as a result o f  the normal iza t ion process (calculated error-free 
data). 
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magnitude and the E value. Table 9 corroborates 
our decision to fix at 2 the A' 's larger than 2. 

Since a sign inversion for ~1~ changes the expected 
values of all the triplets in which h is involved, one 
can wonder how is it possible to solve the CARP 14 a;b. ,~2.,o 14 

2.61 -2 .16  -0 .66  1.08 
structure when about 0.43 of the A signs are wrong. 2.24 -3.50 0.80 1.06 
We do not have a final answer to the problem: 2.08 -2.14 0.57 1.03 
perhaps it depends on a possible organized mechan- 2.07 -2.00 -0.08 1.03 

1.98 -2 .54  -0 .72  1.02 
ism for sign inversion. However, a final conclusion 1.93 -2.30 -0.63 0.99 
can certainly be drawn: since all our test structures, 1.88 -2.13 -0.69 0.97 

1.88 - 2.07 - 0.57 0.93 
CARP included, are solved by our procedure, the 1.82 3.62 -0.09 0.93 
common belief that direct methods are too sensitive 1.71 -2.60 -0.99 0.92 
to experimental (latu sensu) errors, and therefore the 1.64 -3 .68 0.24 0.92 

1.51 5.23 0.00 0.91 
feeling that they are unable to solve ab initio protein 1.51 -3.08 -0.66 0.91 
structures, must be rejected. Our procedure proved 1.48 -2.30 0.62 0.83 

1.41 - 2.31 0.01 0.76 extremely robust even for CARP. The key to our 1.40 -2.03 0.19 0.75 
success is the simultaneous use of many phase rela- 1.38 -2.03 -0.40 0.73 
tionships: even if single ones are heavily affected by 1.26 -2.01 -0.02 0.71 

1.25 -2 .23  0.00 0.68 
errors, all of them cooperate against failure. 1.24 -2.18 -0.99 0.60 

Let us now consider the quality of the prime tools 1.23 -2.56 0.41 0.60 
of the phasing process, the triplets. The larger the 1.El -2.36 0.09 0.59 

1.21 -2 .18  0.31 0.52 
percentage of reflections showing sign inversion for 1.16 -2.68 0.48 0.32 
A', the lower will be the efficiency of the reliability 1.13 2.47 0.17 0.26 
parameter, equation (11) of paper I, for triplet esti- 1.12 -2.44 0.22 
mation. In Table 10, we show for each test structure 
some statistical calculations performed on triplets 
really employed (experimental data) in the phasing 
process. In the table, Nr is the number of triplets 
having ]A > [ARG[, % is the percentage of triplets 
whose cosine sign is correctly estimated, ([~ [) is the 
average of the absolute values of the triplet phase ~. 
Comparison with Table 6 of paper I relative to free 
calculated data shows that the efficiency of the 
parameter given by equation (11) of paper I drops as 
a consequence of the experimental errors in the data, 
lack of isomorphism, statistical treatment of the data 
etc. As could be expected, the worst situation occurs 
for CARP, where, as an effect of the 'experimental' 

1.0 

_ _  APP 

i~ CARP 
o.8 \~ . . . . .  E2 

~ ~  . M-FABP 

0 6  ! 

P O4o2 

- . . . . .  . 

o .o  . . . . .  ~ - '  " o o 0'5 ,'o 1'~ ' 2 b 
IA'I  

Fig.  8. Pe rcen t age  o f  ref lect ions t ha t  u n d e r g o  s ign i n v e r s i o n  for  A' 
as a resul t  o f  the  n o r m a l i z a t i o n  process  a n d  o f  phys ica l  sources  
o f  e r rors  (mos t ly  lack o f  i s o m o r p h i s m  a n d  e r ro r s  in  m e a s u r e -  

ments ) .  E x p e r i m e n t a l  d a t a  are used.  

Table 9. The 51 observed A' values (among the 
N R E F L  reflections) with IA'I-> 2.0 and the corre- 

sponding calculated (error-free) values 

~ b s  Z~cal¢ 

- 2.05 - 0.65 
2.54 - 0.78 

- 2.04 - 0.39 
- 2.03 - 0.66 
- 2.29 0.42 

3.04 - 0.03 
- 2.21 0.50 

2.27 0.15 
- 2.02 0.40 

2.24 - 0.72 
-2 .10  -0 .82  

2.38 0.44 
- 2.02 0.32 

3.81 -0 .92  
2.19 0.50 
3.50 0.64 
2.00 -0 .15  
3.61 0.77 
2.10 -0 .27  
2.31 0.87 
2.44 0.16 
4.28 0.82 
6.21 - 0.07 
7.74 -0 .12  
2.72 0.45 

errors, the sign inversion for A' is particularly fre- 
quent. The percentage of correctly estimated triplets 
is small and uniformly distributed. Furthermore, too 
high reliability parameters IAI are obtained in corre- 
spondence with high percentages of wrong triplets. 

One should wonder why the relatively small per- 
centage of triplets correctly estimated is able to drive 
phases to nearly correct values. The question is not 
of minor importance if one observes that among the 
'correctly estimated triplets' we also include triplets 
having estimated phase substantially differing from 
the true value (sometime up to 90 ° of difference). In 
our opinion, the reserve of power of the method lies 
in the existence of a nearly equivalent number of 
estimated positive and negative triplets. Errors bal- 
ance each other out and a solution can be attained in 
a rather straightforward way. In these conditions, 
the accuracy of the final phases should be modest but 
phase values are useful and fix the structure. A 
countercheck for this conclusion may be obtained by 
using in the phasing process error-free calculated 
data: in these conditions, accurate phase values 
should be produced by the phasing process. The 
results are shown in Table 11. The order of the 
correct solution (among the various trials) as ranked 
by CFOM is always 1 (i.e. that with the highest value 
of CFOM) for all the test structures and the final 
mean phase error calculated over the N L A R  reflec- 
tions is comparable with corresponding errors for 
small molecules. 

The strange behaviour of the figures of merit can 
be explained by comparing Tables 3-6, obtained for 
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Table 10. Stat&tical calculations for triplet &var&nts 
estimated via equation (11) of paper I for various 

values of  SOG used in the phasing process 

Measured  da ta  for  native and derivative structures are used. 

Positive est imated triplets Negat ive est imated triplets 
IARGI Nr  % ( l ~ )  Nr  °/6 ([q~) 

APP  (SOG = 0.4) 
0.2 16459 69.7 67.5 10978 67.1 109.7 
0.4 12499 71.7 65.4 4541 71,4 114.7 
0.8 3104 77.7 58.3 824 75.0 119.0 
1.2 831 81.3 53.0 196 74.0 119.5 
1.6 256 88.3 45.0 36 72.2 124.6 
2.0 83 90.4 43.9 10 80.0 135.5 
2.6 14 85.7 51.6 2 50.0 132.0 
3.2 2 100.0 69.0 

C A R P  (SOG = 0.8) 
2.6 13880 72.0 64.2 16120 65.3 107.6 
3.2 10452 72.6 63.4 11442 65.6 108.0 
4.4 4748 73.6 62.3 5347 67.6 110.2 
6.5 1180 73.7 61.9 1415 70.1 112.8 
9.0 226 70.8 64.8 295 73.6 117.5 

15.0 4 75.0 73.2 4 50.0 110.2 

E2 (SOG = 0.8) 
0.8 14946 73.8 62.2 15054 71.7 115.5 
1.6 6143 77.6 57.9 5457 75.0 119.6 
2.6 381 86.6 46.6 340 84.7 129.1 
3.2 27 81.5 51.3 34 67.6 110.7 

M - F A B P  (SOG = 0.5) 
0.8 15232 64.2 73.8 14768 61.7 103.8 
1.6 4596 68.6 68.9 3696 69.0 I 11.4 
2.6 1002 74.0 63.4 742 73.2 117.0 
3.8 214 76.6 58.9 172 77.3 124.0 
5.5 31 80.6 54.9 23 87.0 132.7 
6.5 7 100.0 35.1 8 87.5 142.7 

Table 11. Mean phase error at the end of the phasing 
process relative to the NLAR reflections 

Error-f ree  calculated da ta  are used. 

Order  o f  
Structure  code ([qo,~o- ~ l c l )  (°) (w[qO~,~o- qO~lc[ ) (°) solut ion 

APP 26 25 1 
CARP 20 19 1 
E2 15 17 1 
M-FABP 20 20 1 

experimental data, with Tables 12-15 obtained for 
error-free calculated data. For example, when experi- 
mental data are used, ALFCOMB is zero for the true 
solution of CARP, close to zero for the true solution 
of M-FABP and very small for the true solution of 
E2. In contrast, ALFCOMB is close to 1 for the true 
solution of all the test structures when calculated 
data are used. Again, PSICOMB is very small for the 
correct solution of CARP when experimental data 
are used and close to 1 when calculated data are 
used. The examples clearly indicate that large 'errors' 
connected to experimental data can greatly disturb 
the efficiency of the various FOMs in a rather 
unforeseeable way. The search for FOMs less sensi- 
tive to 'experimental' errors is a topic of enormous 
importance; however, the FOMs proposed in this 

paper can be considered a first important step in this 
direction. 

A last observation concerns the extraordinary 
small number of trials necessary for obtaining a 
correct solution when error-free data are used. Three 
trials are sufficient for all the test structures. This 
surprising result, not attainable even for small mol- 
ecules, suggests that direct phase solution will be 
even easier when the various sources of error are 
depressed by new experimental techniques and/or by 
a more efficient mathematical treatment. 

Concluding remarks 

A direct procedure for ab initio crystal structure 
solution of proteins has been described. The method 
is based on a probabilistic approach that integrates 
direct methods and isomorphous techniques. The 
keystone is the formula estimating three-phase 
invariants given six magnitudes obtained by Gia- 
covazzo, Cascarano & Zheng (1988), in which the 
crucial role of the normalized difference A' is empha- 
sized. The combined use of native and derivative 
data imposes remarkable differences between our 
procedure and the typical ones used for small- 
molecule crystal structure solution. In order to 
emphasize the necessary differences, the procedure 
has been described step by step: for each step, 
reasons for the various choices are presented. 

The procedure seems to be efficient and robust: the 
correct solution is obtained after a few trials and is 
ranked in the first positions by suitable figures of 
merit. However, we do not claim that it is optimal: in 
spite of its great success (for the first time, the 
successful solution of the phase problem ab initio by 
direct methods for a non-negligible set of reflections 
is performed), the procedure still has some 
drawbacks (i.e. the possible loss of the enantiomorph 
in some symmorphic space groups and the relatively 
small number of phased reflections) but has also a 
reserve of power. Indeed, each of its steps may be 
remarkably improved: the normalization process, the 
weighting scheme used in the tangent formula for 
phase extension and refinement, the treatment of the 
experimental errors, the reduction of the effects of 
lack of isomorphism and the figures of merit are all 
areas that may benefit from future contributions. In 
particular, those methods that analyse the effect of 
measurement errors in the routine methods of 
isomorphous replacement could profitably be used 
for the supplementary weighting of estimated triplet 
phases. In conclusion, the potential of the procedure 
here described is far from being exhausted. Two 
trivial examples of the limitations of the present 
procedure are as follows. 

(a) To spare computer central memory, the set of 
active triplets has been limited to 30 000. In this way, 
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Table 12. APP: calculated error-free data; FOM values for the 'best' trial solutions as ranked by CFOM 

In  the last fine, F O M  values relative to  the true phase solution are quoted;  the last bu t  one line refers to the solution obta ined  by  tangent  
ref inement o f  the true phases. 

Trial  M A B S  A L F C O M B  P S I C O M B  C P H A S E  C F O M  E R R  (weighted) 

3 2.21 0.96 1.0 1.0 0.97 26 (26) 
1 2.23 0.95 1.0 1.0 0.96 86 (86) 
. . : : : : : 

2.22 0.96 1.0 1.0 0.97 26 (26) 
1.61 0.92 1.0 1.0 0.95 0 (0) 

Table 13. CARP: calculated error-free data; FOM values for the 'best' trial solutions as ranked by CFOM 

In the last fine, F O M  values relative to the t rue phase solution are quoted;  the last bu t  one line refers to the solut ion obta ined  by  tangent  
refinement o f  the true phases. 

Trial  M A B S  A L F C O M B  P S I C O M B  C P H A S E  C F O M  E R R  (weighted) 

3 2.13 1.0 1.0 1.0 1.0 20 (19) 
5 1.25 0.15 0.99 1.0 0.48 85 (84) 
: : : . • • : 

2.13 l.O 1.0 1.0 1.O 20 (19) 
1.81 1.O 1.0 1.0 1.0 0 (0) 

Table 14. E2: calculated error-free data; FOM values for the 'best' trial solutions as ranked by CFOM 

In the last fine, F O M  values relative to the true phase solution are quoted;  the last but  one line refers to the solut ion obta ined  by  tangent  
refinement o f  the true phases. 

Trial  

1 
7 
2 

MA B S  A L F C O M B  P S I C O M B  C P H A S E  C F O M  E R R  (weighted) 

1.29 0.98 1.0 1.0 0.99 15 (17) 
1.29 0.98 0.99 1.0 0.98 15 (17) 
1.60 0.91 1.0 1.0 0.95 85 (82) 

: : ; - : : 

1.29 0.98 1.0 1.0 0.99 15 (17) 
1.10 0.95 0.93 0.92 0.94 0 (0) 

Table 15. M-FABP: calculated error-free data; FOM values for the 'best' trial solutions as ranked by CFOM 

In the last fine, F O M  values relative to the true phase solution are quoted;  the last but  one fine refers to the solution obta ined  by tangent  
refinement o f  the true phases. 

Trial MA B S  A L F C O M B  P S I C O M B  C P H A S E  C F O M  E R R  (weighted) 

2 2.32 0.93 1.0 1.0 0.96 19 (20) 
4 1.43 0.22 1.0 1.0 0.50 48 (47) 
5 1.51 0.21 1.0 1.0 0.50 82 (87) 
: . • • • : : 

2.32 0.93 1.0 1.0 0.953 19 (20) 
1.86 0.91 1.0 1.0 0.94 0 (0) 

phase information contained in other triplets is lost: 
for example, for E2, 329164 triplets are found 
among the 1000 active reflections, of which 163632 
are estimated positive and 165532 negative. 299164 
of such triplets are presently neglected. (b) NLAR 
cannot be too large because of point (a). Less restric- 
tions in the procedure will probably improve the 
efficiency of the phasing process. Furthermore, the 
method will strongly benefit from the most modem 
experimental techniques aimed at producing higher- 
quality crystals for native and derivative structures 
and at reducing measurement errors. In our opinion, 
even larger structural systems could in principle be 
accessible to this phasing process. The main limita- 

tion of the present approach is the small number of 
phased reflections rather than the quality of the 
assigned phases. As a consequence, continuity in the 
electron-density map is not secured and map inter- 
pretation (for example, the correct tracing of the 
whole polypeptide backbone) is not possible at this 
stage. However, the assigned phases are of such high 
quality that they can act as a starting point for a 
complete protein structure determination. Future 
efforts will be devoted to the extension of phases to 
reflections not involved in the present procedure. It 
will be shown in a subsequent paper that this can be 
performed without impoverishing the quality of the 
phase values. 
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Abstract 
Accurate X-ray integrated-intensity data collected 
from an extended-face crystal of GaAs are analysed 
to provide detailed information on the thermal vibra- 
tions of atomic species, including cubic anharmon- 
icity, at room temperature. The values obtained for 
the thermal parameters are BGa = 0.622 (3) A 2, B s = 
0.483(5)A 2 and ~GaAs'-" --0.6(1) X 10-18jX -3 
(defined in the text). The inclusion of cubic anhar- 
monic thermal vibrations is shown to be highly 
significant. In order to interpret the data collected 
for certain low-angle Bragg reflections for which 

m 

h + k + l = 4n + 2 (in particular, 200, 222 and 222), it 
is necessary to consider bonding effects. It is shown 
that there is a net transfer of electron charge from 
gallium to arsenic [Q -- 0.12 (3) e] and that the inclu- 
sion of bonding effects in the least-squares analysis is 
highly significant. The analysis includes allowance 
for the extremely severe extinction effects present for 
such a perfect sample (minimum extinction factor 
0.286). The refined value of the mean radius of 

© 1994 International Union of Crystallography 
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perfect-crystal domains is 4.6 (2)I~m. The final fit, 
for 153 independent Bragg reflections, is excellent, as 
indicated by the weighted R factor of 0.683% and 
the goodness-of-fit parameter of 1.083. The results of 
the least-squares analysis are compared for the cases 
of relativistic Hartree-Fock, Thomas-Fermi-Dirac 
and relativistic Dirac-Slater atomic scattering fac- 
tors, the former being favoured. 

Introduction 

GaAs is an extremely important semiconductor 
material that possesses the sphalerite (zinc blende) 
structure. Knowledge of the way in which the atomic 
species in GaAs vibrate is important in many areas 
of research such as studies of diffusion and for 
predicting band-gap temperature dependence. A 
survey of the literature shows that reported values of 
individual Debye-Waller factors for gallium and 
arsenic in GaAs, both experimental and theoretical, 
show a large variation (see also Butt, Bashir & Nasir 
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